The Peaking Phenomenon in Semi-supervised Learning
نویسندگان
چکیده
For the supervised least squares classifier, when the number of training objects is smaller than the dimensionality of the data, adding more data to the training set may first increase the error rate before decreasing it. This, possibly counterintuitive, phenomenon is known as peaking. In this work, we observe that a similar but more pronounced version of this phenomenon also occurs in the semi-supervised setting, where instead of labeled objects, unlabeled objects are added to the training set. We explain why the learning curve has a more steep incline and a more gradual decline in this setting through simulation studies and by applying an approximation of the learning curve based on the work by Raudys & Duin.
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملSemi-Supervised Learning: A Comparative Study for Web Spam and Telephone User Churn
We compare a wide range of semi-supervised learning techniques both for Web spam filtering and for telephone user churn classification. Semisupervised learning has the assumption that the label of a node in a graph is similar to those of its neighbors. In this paper we measure this phenomenon both for Web spam and telco churn. We conclude that spam is often linked to spam while honest pages are...
متن کامل